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1 Introduction

There is a special collection of natural numbers, known as the prime numbers, which cannot be
written as the product of two smaller natural numbers. The existence of such a collection raises
many questions, including

1. Can we easily identify which natural numbers are prime?

2. What is the relationship between the prime numbers and the remaining (composite) natural
numbers?

Mathematicians have excellent tools for primality testing. Probabilistic methods like the Miller-
Rabin Test are both efficient and highly accurate in practice. From a theoretical perspective, the
problem of prime recognition was proven to be in P1 in 2002 due to a breakthrough algorithm
posited by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena[2].

Answers to our second question date back much further than 2002. A proof that the natural num-
bers greater than one factor uniquely as product of primes, up to reordering, is given in Euclid’s
Elements. So not only is it easy to recognize which numbers are prime, but we also know that every
composite number can be written uniquely as a product of these primes. The question that follows
naturally is then: given a natural number n, how do we find these decompositions? We know n
can have at most one factor greater than

√
n, so one way to factor would be to try dividing n by

each prime p up to
√
n. This process is known as trial division, and while it is extremely inefficient,

it is guaranteed to work.

For many years, the knowledge that factoring was solved in theory was enough to satisfy most
mathematicians. Yes, trial division was slow, rendering many composite numbers unfactorable in
our lifetime, but we knew how to factor. There were many problems that did not yet have even a
theoretical solution, and it was these questions, and not that of how to factor more quickly, that
attracted the attention of mathematicians.

Then technology changed everything. Computers became broadly available, and their computa-
tional power appeared to double every two to three years, making executable in hours algorithms
that would have previously taken millennia to finish. Suddenly, fast factoring seemed achievable.
The president of the Association for Computing Machinery summarized the landscape well in 1984
when he remarked upon the task of factoring 2251−1: “Even 20 years ago... the search time was esti-
mated to be about 1020 years. The number was factored in February of this year... in 32 hours[28].”

Not only did the factorization of large numbers become increasingly possible, but the importance
of such factorizations grew as well. As computers developed, so did the field of cryptography, with
mathematicians and computer scientists designing cryptographic systems based on the perceived
difficulty of many problems in number theory, including factoring. Suddenly, it was critical to know
exactly how capable we were of factoring large composites, as it would determine the security of
many cryptographic protocols.

1i.e., solvable in polynomial time
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The most relevant characteristic of a factoring method is the speed at which it can factor a number
n. As a baseline, factoring algorithms are compared to the performance of trial division. In the
simplest implementation of trial division, we divide n by every number up to

√
n to identify the

prime factors. This takes O(
√
n) steps. To evaluate factoring algorithms, however, we examine the

running time in terms of the size of the representation of n in the computer, which is b = log(n).
We can solve to see that 2b/2 =

√
n, and so then factoring by trial division takes O(2b/2) time.

This means that as n increases, the time needed to perform trial division increases exponentially.
Consequently, modern day factoring algorithms, which should improve on the performance of trial
division, are expected to run in sub-exponential time, with an open question being if factoring, like
multiplication, is possible in polynomial time on classical computers. In the following chapters, we
will introduce and analyze two sub-exponential general purpose factoring algorithms, the Quadratic
Sieve and the Number Field Sieve.
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2 The Quadratic Sieve

2.1 The Building Blocks

2.1.1 Elementary Difference of Squares

Many people first become introduced to difference of squares factorization in the context of quadratic
equations. Given equations of the form x2 − c2 = 0, we are taught to reduce the left-hand side to
a product of the linear terms (x+ c)(x− c), to facilitate easy identification of the roots (±c). This
same technique can be used to quickly factor any number that can be written as a difference of
squares.

Example 1. (Difference of Squares Factorization) [28] 8051, written as the difference of 8100 and
49, factors as follows:

8051 = 8100− 49

= 902 − 72

= (90 + 7)(90− 7)

= 97 · 83.

In fact, any odd composite number2 can be written as a difference of squares, and thus factored via
this method, using the identity ab = (12(a+ b))2− (12(a− b))2. The difficulty in factoring a number
n then becomes determining appropriate u, v such that n = u2 − v2.

Fermat’s factorization method attempts to find u and v by making an initial guess of u1 = d
√
ne,

and if u21 − n is not a square, progressing to check u2 = u1 + 1, u3 = u2 + 1, and so on, until a
difference of squares is identified. In the best case scenario, when n has a factor near

√
n, this

method is very efficient; unfortunately, this is the case for only a tiny percentage of n. When n has
no factors near

√
n, Fermat’s method can perform significantly worse than trial division [28].

Example 2. (Fermat’s Factorization Method) We factor n = 2021 using Fermat’s technique. First
we compute u1 = d

√
ne = 45. We can see

452 − n = 2025− 2021 = 4.

Four is a perfect square, so we can write n = 452 − 22 and obtain the factorization

2021 = 47 · 43.

2.1.2 Kraitchik’s Improvements

The primary source of inefficiency in Fermat’s technique is the time it takes to identify u and v
when n has no factor near its root. This difficulty was partially alleviated by Maurice Kraitchik,
who, in the 1920s, suggested that instead of requiring u2− v2 = n, it would suffice to find u, v such
that u2 − v2 was a multiple of n [28]. Not all solutions to u2 ≡ v2 (mod n) are interesting, but if
this equivalence holds, and u 6≡ ±v (mod n), then n|(u+ v)(u− v) while n does not divide either

2We are only interested in factoring odd composites, as it is easy to identify and divide out powers of two.
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factor (u±v). Then gcd(u−v, n) (or alternatively, gcd(u+v, n)) must yield a nontrivial factor of n.

Using the Euclidean algorithm, gcd(a, b) can be computed in O(log(min(a, b))) steps. This is
extremely fast, meaning that if suitable u, v can be found, that is, u, v such that u2 ≡ v2 (mod n)
but u 6≡ ±v (mod n), factorization will be simple under Kraitchik’s method. How does this improve
on Fermat’s results? Kraitchik’s requirement that u2 ≡ v2 (mod n) is less stringent than Fermat’s,
which asks that u2 = v2 +n, and so it should be easier to find u, v to satisfy Kraitchik’s equivalence
than to satisfy Fermat’s equality. But for this additional flexibility to be helpful, we need to be
able to find u, v such that u 6≡ ±v (mod n) as well. Luckily, this task is not too onerous.

Lemma 1. If n is odd and divisible by at least two different primes, then at least half of the
solutions to u2 ≡ v2 (mod n), with uv coprime to n, have u 6≡ ±v (mod n), and thus result in
gcd(u− v, n) non-trivial.

Proof: Following [30], we give proof in the case where n = pq, with p, q distinct primes, from which
generalization is easy. Consider the equation x2 ≡ v2 (mod p). The solutions x ≡ ±v (mod p) are
immediate. Suppose that v ≡ −v (mod p). Then 2v ≡ 0 (mod p). Since n is odd, p must be odd,
so this implies v ≡ 0 (mod p). However, uv is coprime to n, so this is a contradiction. Therefore
v 6≡ −v (mod p), and the solutions x ≡ ±v (mod p) are distinct.

By similar reasoning, we see that y2 ≡ v2 (mod q) has distinct solutions y ≡ ±v (mod q). Then
by the Chinese Remainder Theorem, we can solve the following systems of congruences to get four
distinct solutions for u, where u2 ≡ v2 (mod n).

u ≡ v (mod p), u ≡ v (mod q) =⇒ u ≡ v (mod n)

u ≡ −v (mod p), u ≡ −v (mod q) =⇒ u ≡ −v (mod n)

u ≡ v (mod p), u ≡ −v (mod q) =⇒ u ≡ z (mod n)

u ≡ −v (mod p), u ≡ v (mod q) =⇒ u ≡ −z (mod n)

The solutions u ≡ ±z (mod n) will result in gcd(u− v, n) nontrivial, so at least half the solutions
of u2 ≡ v2 (mod n) are nontrivial in the case n = pq. To generalize to the case where n is the
product of more than two primes, take p to be one prime, and q = n

p .

Now that we know that at least half of the solutions to u2 ≡ v2 (mod n) will give us a nontrivial
factor of n, we can feel confident that finding such a (u, v) pair is an appropriate factoring strategy.
Kraitchik begins the search for u, v in the same place as Fermat, setting u1 = d

√
ne, examining if

Q(u1) = u21 − n is a square, and progressing to u2 = u1 + 1 if it isn’t. However, Kraitchik goes one
step beyond Fermat — instead of just considering if Q(ui) = u2i −n is a square, Kraitchik also asks
whether products of some of the Q(ui)’s are squares. We have a congruence

Q(ui1) · · ·Q(uik) = (u2i1 − n) · · · (u2ik − n) ≡ u2i1 · · ·u
2
ik

(mod n),

so if Q(ui1) · · ·Q(uik) = v2 for some v, then letting u = ui1 ·uik , we obtain u2 ≡ v2 (mod n), which
is the relationship we desired. In this way, requiring congruence modulo n, rather than equality,
gives Kraitchik many more possible pairs (u, v) which may lead to a nontrivial factorization of n
than Fermat would have had.
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Example 3. (Kraitchik’s Method) [28] We factor n = 2041 using Kraitchik’s method. Let

Q(u) = u2 − n = u2 − 2041

generate the auxiliary numbers. We begin with u = d
√

2041e = 46 and compute the first six
auxiliary numbers, shown in Table 1.

u 46 47 48 49 50 51

Q(u) 75 168 263 360 459 560

Table 1: The first six auxiliary numbers

If Q(u) is a square, we can factor n immediately using difference of squares. (This is Fermat’s
technique.) None of the first six auxiliary numbers are square in this example, so at this point,
Fermat would need to keep searching. However, Kraitchik, who needs only an equivalence, and
not an equality relationship, has additional tools to work with. Kraitchik uses trial division to
factor the auxiliary numbers, which are smaller than n and thus easier to factor, and observes that
several of them factor completely over small primes. In particular, 75 = 3 · 52, 168 = 23 · 3 · 7,
360 = 23 · 32 · 5, and 560 = 24 · 5 · 7. A closer look at these factorizations reveals that the product
of these four auxiliary numbers is itself a square. Letting v = 25 · 32 · 52 · 7 and u = 46 · 47 · 49 · 51,
we have

v2 = 75 · 168 · 360 · 560 = (462 − 2041)(472 − 2041)(492 − 2041)(512 − 2041) ≡ u2 (mod 2041).

Simplifying, we get that u ≡ 311 (mod 2041) and v ≡ 1416 (mod 2041). Then u 6≡ v (mod 2041),
so this (u, v) pair should give a nontrivial factor of 2041. And indeed, gcd(1416− 311, 2041) = 13
and 2041 = 13 · 157. This factors 2041 completely.

2.1.3 Systematizing Difference of Squares

In Example 3, we found v, and then u, by factoring several auxiliary numbers and observing from
their decompositions that their product would be a square. However, we were fortunate in several
respects when dealing with this example. Firstly, we only needed to compute six auxiliary numbers
before we were able to find a subset that multiplied to a square - for a different n, one could imagine
requiring many more auxiliary numbers before this is possible. Secondly, the auxiliary numbers
we used to create v factored completely over the first four primes, so it was easy to recognize that
their product would be a square. Yet with many more auxiliary numbers, and many more primes
involved in the factorization of these auxiliary numbers, it could quickly become quite difficult to
spot nice products of auxiliary numbers with the naked eye. This suggests that a more systematic
approach is needed to use Kraitchik’s method in practice.

A more methodical strategy for finding a subset of auxiliary numbers whose product is a square was
first given by John Brillhart and Michael Morrison in 1975 [25]. They recognized that every positive
integer m has a corresponding exponent vector v(m) determined by its prime factorization. If
pi is the ith prime, then m can be written as m =

∏
i p
vi
i . We then define v(m) = (v1, v2, . . .).

This definition can be extended to include negative numbers by incorporating a 0th coordinate at
the start of the vector v(m), which is 0 if m is positive or 1 if m is negative. Essentially, we can
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consider −1 to be the 0th prime, and v0 the exponent corresponding to it in the factorization of m.

Using exponent vector representation, we can see that the product of several non-zero integers being
a square is equivalent to the sum of their exponent vectors equaling the zero vector modulo 2. This
observation suggests that instead of recording the factorization of the auxiliary numbers once we
compute them, what we really need to store is their exponent vectors modulo 2. Of course, as there
are infinitely many primes, each exponent vector will have infinitely many entries, though only
finitely many of them will be nonzero. To limit the scope of the problem, Brillhart and Morrison
suggest one further simplification.

Definition 1. (Y-smooth) A number n is Y-smooth if it has no prime factors exceeding Y.

Brillhart and Morrison recommend designating some prime pB and only considering auxiliary num-
bers that are pB-smooth, i.e., that factor completely over the first B primes. These auxiliary
numbers will yield truncated (and reduced modulo 2) exponent vectors in the vector space FB+1

2 ,
which is B + 1 dimensional. If we can find B + 2 such auxiliary numbers, we know their cor-
responding exponent vectors will be linearly dependent in FB+1

2 , and some linear combination of
them will sum to the zero vector. As the only scalars in FB+1

2 are 0 and 1, this is equivalent
to saying some subset of the B + 2 vectors will sum to the zero vector. Since these are exponent
vectors, the auxiliary numbers corresponding to this subset of vectors will thus multiply to a square.

We redo the problem from Example 3 to illustrate how to apply Brillhart and Morrison’s insights
in practice.

Example 4. (Brillhart and Morrison) We again factor n = 2041, and let Q(u) = u2−2041 generate
the auxiliary numbers. This time, we will allow for auxiliary numbers to be negative. This helps
keep the absolute value of the auxiliary numbers small, making them easier to factor and break
into exponent vectors. In this example, we will work with auxiliary numbers that are 5-smooth, so
our exponent vectors will be in F4

2, as we are counting −1 as a prime.

u Q(u) Factorization v(u) v(u) (mod 2)

43 −192 −1 · 26 · 3 (1, 6, 1, 0) (1, 0, 1, 0)

44 −105 −1 · 3 · 5 · 7 −−− −−−
45 −16 −1 · 24 (1, 4, 0, 0) (1, 0, 0, 0)

46 75 3 · 52 (0, 0, 1, 2) (0, 0, 1, 0)

Table 2: Auxiliary numbers with corresponding factorization and exponent vectors

Since Q(44) = −105 is not 5-smooth, we do not bother computing its exponent vector. However,
by examining the fifth column, we can see that the exponent vectors (modulo 2) corresponding to
Q(43), Q(45), and Q(46) already sum to the zero vector, suggesting correctly that for v = 25 · 3 · 5,

Q(43) ·Q(45) ·Q(46) = v2.

Then letting u = 43 · 45 · 46, we generate the desired equivalence u2 ≡ v2 (mod 2041). Simplifying,
we see that u ≡ 1247 (mod 2041), v ≡ 480 (mod 2041), and

gcd(u− v, 2041) = gcd(767, 2041) = 13

8



again yields a nontrivial factor of 2041. Note that we are a little lucky in this example because we
only needed three vectors to find a linear dependence in F4

2, when in general we require five vectors
in this space before any linear dependence is guaranteed.

Some questions remain about how to scale Brillhart and Morrison’s method to larger n. When B
is small, as in Example 4, it is feasible to identify a subset of exponent vectors, reduced modulo
2, that sum to zero by hand. But how difficult is it to identify such a subset when the number of
vectors to choose from is much larger? Finding a linear dependence relation is a question of linear
algebra which can be solved by the Wiedemann coordinate recurrence method in time B2+o(1) [29].
So once we identify B + 2 pB−smooth auxiliary numbers, it is rather straightforward, using their
exponent vectors, to find a subset whose product is a square.

A trickier problem is checking if the generated auxiliary numbers are pB-smooth. To this point,
we have been using trial division to accomplish this, but this strategy is efficient only when the
auxiliary numbers are small; as x moves further from

√
n the value of Q(x) = x2 − n grows and

this approach becomes more and more costly. Since every auxiliary number needs to be checked for
smoothness, and there may be many auxiliary numbers, advances in this area will have an outsized
impact on the overall time necessary for factoring. In Section 2.2.1, we describe the improvements
offered in determining smoothness by the Quadratic Sieve.

Finally, there is the challenge of choosing pB. The smaller pB is, the fewer smooth auxiliary numbers
are needed before one can find a linear dependence relation in FB+1

2 , and thus find a product of
auxiliary numbers that are a square. However, choosing pB small also decreases the chance that
any given auxiliary number is pB-smooth. So one could be forced to generate a large number of
auxiliary numbers before finding enough smooth ones to proceed with finding a dependence relation.
The ideal choice for pB is then the solution to an interesting problem of optimization, which must
strike a balance between these two extremes. The process for selecting pB is detailed in Section
2.2.2; it is the final piece needed to give a complete description of the Quadratic Sieve algorithm.

2.2 The Quadratic Sieve

2.2.1 Using a Sieve to Evaluate Smoothness

If we wanted to check which integers in the range [1, X] were Y -smooth, we would not proceed by
trial division — we have a much more efficient solution, suggested by the Sieve of Eratosthenes.
Beginning with the smallest prime, 2, we can divide every second number (i.e. every multiple of 2)
by 2. We repeat this process with all the primes p < Y , dividing every pth number in the sequence
1, . . . , X by p. If we also divide out by small powers of p, where pe ≤ Y , we can see that at the
end of this process, all the Y -smooth numbers in [1, X] will have been transformed to 1. Only 1 in
every p integers is divisible by p, so the time to divide the appropriate numbers in [1, X] by p is
proportional to X/p. Then the time to sieve for every prime less than Y will be proportional to

X
∑
p′≤Y

1

p′
,

where p′ is a prime or a power of a prime. We simplify the summation using the following theorem
from Mertens in 1874:
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Theorem 1. (Mertens) [20] For p prime,∑
p≤y

1

p
= log log(y) + C +O

( 1

log(y)

)
,

where C is a constant.

From Mertens, we can see that the time to sieve [1, X] for primes less than Y will be proportional
to X log log(Y ). So for each integer in [1, X], we are doing about log log(Y ) worth of work. This
is much better than trial division, which takes π(Y ) = #{p ≤ Y : p prime} ∼ Y/ log(Y ) work for
each integer.

Under the method suggested by Brillhart and Morrison, we want to check for Y -smoothness on
the sequence generated by Q(x) = x2 − n, not [1, X]. Can the sieve technique still apply? What
makes sieving efficient on [1, X] is that the multiples of a prime or prime power p′ appear at reg-
ular intervals. Fortunately, this property holds over the sequence Q(x). Letting x′ = x + kp, we
have x′ ≡ x (mod p), and so (x′)2 ≡ x2 (mod p). Then, solutions to Q(x) ≡ 0 (mod p), i.e.
x2 ≡ n (mod p), give sequences x, x ± p, x ± 2p, . . . where the corresponding auxiliary numbers
Q(x) are divisible by p.

Solutions to x2 ≡ n (mod p) are well-understood. Assuming p and n are coprime and p > 2, then
using Euler’s criterion, we know that x2 ≡ n (mod p) has two solutions if n(p−1)/2 ≡ 1 (mod p) and
no solutions otherwise [7]. Further, this value can easily be checked using a fast-powering algorithm.
If there are no solutions, no sieving needs to be done. If x2 ≡ n (mod p) has solutions, and p ≡ 3
(mod 4), the solutions x ≡ ±n(p+1)/4 (mod p) are given directly. In the case where p ≡ 1 (mod 4),
we know of many algorithms, including those given by Cipolla-Lehmer and Tonelli-Shanks, that
can compute solutions efficiently, in time O(log3(p)) and O(log4(p)) respectively [16]. The time to
do these computations pales in comparison to the time needed to perform the sieve itself, as we
will see in Section 2.2.2. Similar techniques, with equal efficiency, work for powers of odd primes
and also in the case where p = 2, though x2 ≡ n (mod 2) has at most one solution in this instance.
Solving modulo powers of 2 is slightly more complicated, but still efficient when compared to siev-
ing; if x2 ≡ n (mod 2k), and k ≥ 3, we have four solutions (x,−x, x + 2k−1,−(x + 2k−1)) when
n ≡ 1 (mod 8) and no solutions otherwise. Using Hensel’s Lemma, we can lift solutions from the
case where x2 ≡ n (mod 2k−1), finding a zero in O(2n2 log2(p)) steps [4]. Thus obtaining solutions
to x2 ≡ n (mod pk) for pk ≤ Y will not be an impediment to our algorithm.

Since we can solve Q(x) ≡ 0 (mod p′), and from this solution easily locate auxiliary numbers that
are divisible by p′, for p′ a prime or power of a prime, we can apply a sieve over primes up to Y
to the sequence generated by the quadratic Q(x) = x2 − n. Since multiples of primes appear at
regular intervals in this sequence too, this will again require time proportional to log log(Y ) per
integer in the sequence. So we retain our advantage over trial division in recognizing Y -smooth
auxiliary numbers, and label this technique the Quadratic Sieve.

Example 5. (Quadratic Sieve) [19] We show how to use the sieve technique to factor n = 87463,
with pB = 37. First, we check for which primes p the equivalence Q(x) = x2 − n ≡ 0 (mod p) has
solutions. We use the Legendre symbol

(
n
p

)
to represent the value n(p−1)/2.
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p 2 3 5 7 11 13 17 19 23 29 31 37(
n
p

)
1 1 −1 −1 −1 1 1 1 −1 1 −1 −1

Table 3: Primes for which n is a quadratic residue

Recall that
(
n
p

)
= 1 if and only if x2−n ≡ 0 (mod p) has solutions. So the primes we need to sieve

over are P = {2, 3, 13, 17, 19, 29}. What are the solutions to x2 ≡ n (mod p) for these primes?

p 2 3 13 17 19 29

x 1 1, 2 5, 8 7, 10 5, 14 12, 17

Table 4: Solutions to x2 ≡ 87463 (mod p).

Now we are ready to sieve. First we must generate the auxiliary numbers Q(x) = x2 − n. We
know b

√
87463c = 295, so letting M = 30, we generate Q(x) for x ∈ [295 −M, 295 + M ]. Then

we can sieve through by each prime in P . We know that 265 ≡ 1 (mod 2), so 2|Q(265), and every
second number from there on. That is, 2|Q(267), 2|Q(269), and so forth. So we have identified
each auxiliary number that we need to divide by 2. Similarly, 265 ≡ 1 (mod 3), so 3|Q(265) and
every third number from there on. Additionally, 266 ≡ 2 (mod 3), so 3 also divides Q(266) and
every third number from there on. Now we have identified each auxiliary number that we need to
divide by 3. We can continue on in this matter, identifying x equivalent to one of the solutions of
p for each remaining p ∈ P , and then identifying the Q(x) associated with it and its multiples to
determine where to divide. Once we have done this for each p ∈ P , and small powers of the p’s,
the smooth auxiliary numbers will be transformed to 1.

There are six values of x for which Q(x) = x2 − n is smooth over P : 265, 278, 296, 299, 307, and
316. Their exponent vectors, reduced modulo 2, are:

x -1 2 3 13 17 19 29

265 1 1 1 0 1 0 0
278 1 0 1 1 0 0 1
296 0 0 0 0 1 0 0
299 0 1 1 0 1 1 0
307 0 1 0 1 0 0 1
316 0 0 0 0 1 0 0

Table 5: Exponent vectors, reduced modulo 2, of the auxiliary numbers

We can see that takingQ(265), Q(278), Q(296), andQ(307), that is, the first, second, third, and fifth
rows, produces the needed dependence. So we have u = 265 · 278 · 296 · 307 ≡ 34757 (mod n) and
v =

√
(2652 − n) · (2782 − n) · (2962 − n) · (3072 − n) ≡ 28052 (mod n), with u2 ≡ v2 (mod n).

Taking gcd(u− v, n) = 149, we get the factorization n = 87463 = 149 · 587.

In this example we were fortunate that our relatively small choices for pB, the largest prime we
checked for smoothness over, and 2M , the number of auxiliary numbers we sieved over, worked
out. Section 2.2.2 will explain how to make intelligent choices for these variables.
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2.2.2 Choosing pB and Arriving at a Complexity Estimate

What is the optimal choice for pB? Richard Schroeppel, in the late 1970s, proposed a way of
answering this question using complexity theory [28]. Let Y estimate the value of pB, and take X
to be an upper bound on the size of auxiliary numbers used in factorization. Schroeppel’s insight
was to imagine the auxiliary numbers Q(x) as a random sequence — an assumption that has held
up pretty well in later surveys [29]. Following this assumption, we are able to compute an estimate
for the number of steps needed to factor n via the method followed in Example 5 in terms of X
and Y . Then we can minimize this expression, choosing Y as a function of X, to model the fastest
possible factorization.

Recall that X represents an upper bound on the auxiliary numbers. If we sieve over the auxiliary
numbers Q(x) = x2 − n, where x ∈ [n1/2, n1/2 + nε], 0 < ε < 1/2, then we have an approximate
upper bound of 2n1/2+ε on the auxiliary numbers. So we can set X = 2n1/2+ε.

We need to find a group of auxiliary numbers whose product is a square — under the assumption
that the sequence Q(x) is basically random, this amounts to determining the expected number of
random integers bounded by X needed to find a subset that multiply to a square. As in Example
5, we approach this problem by finding Y -smooth integers in our sequence of auxiliary numbers.
To begin, we need to find one smooth integer.

Definition 2. Let ψ(X,Y) represent the number of Y -smooth integers in the interval [1, X].

The probability that a random positive integer up to X is Y−smooth is ψ(X,Y )
bXc ≈ ψ(X,Y )

X . The
expected number of random integers needed to find one Y -smooth integer is then the reciprocal of
this number, X

ψ(X,Y ) . However, it is not enough to find one Y -smooth integer.

Definition 3. Let π(Y) denote the number of primes up to Y.

To find a linear dependence among the exponent vectors in Fπ(Y )+1
2 , which indicates that a product

of some subset of the auxiliary numbers is square, we need to find π(Y ) + 2 auxiliary numbers
which are Y -smooth. For simplicity, we round this to π(Y ). Then, we would expect to need
π(Y )X/ψ(X,Y ) auxiliary numbers, assuming they appear randomly, to find enough Y -smooth
numbers to factor. And once we generate an auxiliary number, we need to do some additional work
to determine whether it is Y -smooth or not. As discussed in Section 2.2.1, using the Quadratic
Sieve we can determine Y -smoothness in time log log(Y ) per auxiliary number. So the expected
number of steps needed to find enough suitable auxiliary numbers to factor n is

π(Y ) log log(Y )X

ψ(X,Y )
.

We want to choose a value for Y , our estimate for pB, that minimizes the number of steps needed to
factor n. So we will choose Y as a function of X to minimize π(Y ) log log(Y )X/ψ(X,Y ). We break
down this term by making some estimates. Let Y = X1/u. First, following [29], we approximate

π(Y ) log log(Y ) ≈ X1/u.

Next, we make an estimate for X
ψ(X,Y ) . It is a result of Karl Dickman [10] that ψ(X,X1/u)

X ∼ ρ(u)

for each fixed u ≥ 1, where ρ(u) is the Dickman-de Bruijn function, a continuous function that
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satisfies uρ′(u) = −ρ(u− 1) for u > 1 and ρ(u) = 1 for u ∈ [0, 1]. As u increases, by [9] we have

ρ(u) = exp[−u{log(u) + log log(u)− 1− 1

log(u)
+

log log(u)

log(u)
+O

((log log(u))2

(log(u))2

)
}].

Observe that the dominant term in this exponent is −u(log(u)), which tells us that the behavior of
ρ(u) can be seen as similar to u−u. E.R. Canfield, P. Erdős, and C. Pomerance showed in [12] that

this property, that ψ(X,X1/u)
X ∼ ρ(u), which in turn resembles u−u, remains mostly true as X →∞

and u→∞, as long as X1/u > log(X)1+ε. In such a case, we get

ψ(X,X1/u)

X
= u−(1+o(1))u

for any fixed ε > 0. So we can approximate

X

ψ(X,Y )
≈ uu,

as Y = X1/u. Then we reach the much cleaner estimate

π(Y ) log log(Y )X

ψ(X,Y )
≈ X1/uuu

for the number of steps required to factor n.

We want to choose u in a way that minimizes this expression. We take the logarithm of both sides
so as to not work with exponents; this will not affect our estimate, as log is a strictly increasing
function. Then we have the expression

1

u
log(X) + u log(u),

which has derivative
−1

u2
log(X) + 1 + log(u).

This derivative will equal zero when log(X) = u2(log(u)+1). We take the logarithm of this equation,
dropping lower degree terms, to see that

log(u) ∼ 1

2
log log(X).

Plugging this estimate for log(u) into the equation we obtained by setting the derivative to zero
and solving for u, we see that

u ∼
( 2 log(X)

log log(X)

)1/2
.

From here, we can estimate

Y = X1/u

= exp
(1

u
log(X)

)
= exp

(
o(1)

( log log(X)

2 log(X)

)1/2
log(X)

)
= exp

(
(2−1/2 + o(1))(log(X) log log(X))1/2

)
.

13



We can also estimate

uu = exp(u log(u))

∼ exp
(( 2 log(X)

log log(X)

)1/2
log
(( 2 log(X)

log log(X)

)1/2))
∼ exp

(( 2 log(X)

log log(X)

)1/2
· 1

2
(log(2) + log log(X)− log log log(X))

)
∼ exp

(( 2 log(X)

log log(X)

)1/2
· 1

2
(log log(X))

)
∼ exp

(( log(X) log log(X)

2

)1/2)
.

Combining this with the previous estimate, we can get an estimate for X1/uuu, the number of steps
needed to perform the Quadratic Sieve to factor n. Then

X1/uuu = exp
(
(21/2 + o(1))(log(X) log log(X))1/2

)
.

Plugging in X = 2n1/2+ε, we get the following estimates for Y and the complexity of the sieve step:

Y = exp
(
(1/2 + o(1))(log(n) log log(n))1/2

)
X1/uuu = exp

(
(1 + o(1))(log(n) log log(n))1/2

)
.

To simplify this expression, we introduce L-notation.

Definition 4. (L-notation) Define

Ln[α, c] = exp((c+ o(1))(log(n))α(log log(n))1−α),

where c is a positive constant and α is a constant with 0 ≤ α ≤ 1.

Then the sieve step of the Quadratic Sieve requires Ln[1/2, 1] steps.

2.2.3 The Quadratic Sieve Algorithm

At last, we are ready to put forth an explicit algorithm for the Quadratic Sieve.

Algorithm 1. (Quadratic Sieve) Let n be a composite number divisible by at least two different
primes. We proceed to find a nontrivial factorization of n.

1. Set Y = exp
((

1
2 + o(1)

)(
log(n) log log(n)

) 1
2
)
, as discussed in Section 2.2.2.

2. Run through the sequence Q(x) = x2−n until π(Y )+2 auxiliary values that are Y -smooth are
found. Expect to need, by Section 2.2.2, {π(Y )n1/2+o(1)}/{ψ(n1/2+o(1), Y )} values of x before
this occurs. The values of x chosen should be centered around d

√
ne, so that the auxiliary

numbers Q(x) remain small, and are more likely to be smooth. Do this step efficiently by
generating a large quantity of auxiliary numbers first, and then using the Quadratic Sieve to
check for smoothness, as in Example 5.
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3. When at least π(Y ) + 2 smooth auxiliary numbers are identified, retrieve the exponent vec-
tors of these numbers, reduced modulo 2, and use a technique from linear algebra, likely
Wiedemann Coordinate Recurrence, to find a dependence among these vectors, which will
correspond to a subsequence Q(x1), . . . Q(xm) of auxiliary numbers that multiply to a square.
Let this square be v2. Recover v from the prime factorization given by the exponent vectors,
and let u = x1 · · ·xm. Reduce both u and v modulo n.

4. We now have u2 ≡ v2 (mod n). Check that u 6≡ ±v (mod n); if this is the case, compute
gcd(u − v, n) to retrieve a nontrivial factor of n. If u ≡ ±v (mod n), return to Step 2 and
expand the values used for x to generate new smooth auxiliary numbers. Then move to Step 3
and look for a new linear dependence among the exponent vectors. Repeat this process until
u and v are found such that u2 ≡ v2 (mod n) but u 6≡ ±v (mod n), at which point we can
take the gcd(u− v, n) to find a nontrivial factor of n.

We now examine each step of our algorithm. Step 1 is only done once, and involves the computation
of a constant, so it will involve negligible work — at worst, a small power of log(n). In Step 2
we perform the Quadratic Sieve, which by Section 2.2.2 is expected to take Ln[1/2, 1] steps. To
perform the sieve, we must also compute solutions to x2 ≡ n (mod pk) for primes p such that
pk ≤ Y ; however, as noted in Section 2.2.1, these solutions can be found quite efficiently and in time
that does not compare to the time involved in sieving. In Step 3 we use Wiedemann coordinate
recurrence (or an equivalently fast method) to find a dependence among the exponent vectors
of our smooth auxiliary numbers. The matrix of these exponent vectors will be approximately
π(Y )× π(Y ), which Wiedemann coordinate recurrence can tackle in time complexity Y 2+o(1) [29].
This step makes a significant contribution to the runtime of the overall Quadratic Sieve algorithm,
especially because, unlike the sieving step, there is no way to parallelize the implementation of the
linear algebra step to gain a practical, although not asymptotic, speedup. But though it about
equals it, the linear algebra of Step 3 still does not surpass the time required for the sieve in Step
2. Finally, in Step 4 the primary calculation is the gcd, which, as discussed in Section 2.1.2, can
be done so efficiently via the Euclidean algorithm that its contribution to the overall running time
of the algorithm is negligible. So the most time-intensive part of factoring via the Quadratic Sieve
algorithm is performing the sieve itself, giving the overall algorithm a runtime of Ln[1/2, 1].

2.3 Improvements on the Quadratic Sieve

In this section, we explore various alterations to the Quadratic Sieve. While the asymptotic com-
plexity remains unchanged, as these changes mainly affect the o(1) term, implementations of the
Quadratic Sieve that make use of these methods see significant gains in performance over the
traditional algorithm.

2.3.1 Working with Logarithms

One way to speed up the Quadratic Sieve is to reduce the amount of division necessary to identify
smooth auxiliary numbers. Imagine we are sieving overQ(x) = x2−n for x ∈ (d

√
ne −M, d

√
ne+M).

We can rewrite Q(x) = (x+d
√
ne)2−n, and sieve over Q(x) for x ∈ (−M,M). Then we can initial-

ize a zero array of length 2M , and for every prime p we are sieving over, add log(p) to the array at
indices x± kp, where x2 ≡ n (mod p) and k is an integer. Q(x) ≈M

√
n on the interval (−M,M),

so taking the natural map between Q(x) and the locations in the array, any Q(x) that are smooth
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should have value about 1
2 log(n) + log(M) in the corresponding location of the array. Then we can

restrict factoring via division to Q(x) whose array look-ups approach 1
2 log(n)+ log(M), and avoid-

ing doing division on any Q(x) that are not smooth [34]. Using the array technique, the majority
of divisions are replaced with addition operations, which are much less computationally expensive.
Practically, this will improve the runtime of the algorithm, but since this division was not the main
contributor to the complexity of the Quadratic Sieve, the overall asymptotic complexity estimate
will be unchanged.

2.3.2 Multiple Polynomials

One challenge in finding the requisite number of smooth auxiliary numbers is that the more auxil-
iary numbers Q(x) we consider, the further x moves from

√
n, and the larger Q(x) = x2−n becomes.

As Q(x) becomes larger, it is less and less likely to be smooth, which means we will have to look at
an ever increasing number of auxiliary numbers to continue to find smooth ones. One way to alle-
viate this problem is to look at auxiliary numbers generated by multiple polynomials, not just Q(x).

We have been thinking of the sequence of Q(x)’s as the being generated by the polynomial x2 − n,
where we choose x near d

√
ne. We can rewrite this expression as Q(x) = (x + b)2 − n, where

b = d
√
ne, so that we can choose x near zero. Peter Montgomery had the idea to generalize this

quadratic, and use other quadratics of the form Qa,b(x) = (ax + b)2 − n, where 0 < b < a
2 [34].

Choose a = q2 and b so that b2 − n = ac for some integer c [16]. Then

a−1Qa,b(x) = a−1((ax+ b)2 − n)

= a−1(a2x2 + 2bax+ b2 − n)

= a−1(a2x2 + 2bax+ ac)

= ax2 + 2bx+ c.

Furthermore,

a−1Qa,b(x) = (q2)−1((ax+ b)2 − n)

≡
(
(ax+ b)(q−1)

)2
(mod n).

So (
(ax+ b)(q−1)

)2 ≡ ax2 + 2bx+ c (mod n).

Thus we can let the polynomial ax2 + 2bx + c determine auxiliary numbers, and check the values
it generates for smoothness. Since the quadratic ax2 + 2bx + c is equivalent to a square modulo
n, we can apply the same trick of combining smooth auxiliary numbers to find u, v such that
u2 ≡ v2 (mod n), u 6≡ ±v (mod n), and gcd(u− v, n) is nontrivial. By adjusting a and b, we can
get many candidate polynomials for generating auxiliary numbers. So when the auxiliary numbers
generated by a polynomial Qa,b(x) get so large that they are unlikely to be smooth, we can switch
to another polynomial and generate another round of small, and more likely to be smooth, auxiliary
numbers.

Multiple Polynomial Quadratic Sieve has several advantages. Computationally, it preserves the
ability of the Quadratic Sieve algorithm to be parallelized across multiple processors, as each
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processor can sieve over auxiliary numbers generated by different polynomials, and contribute its
results to a central database of smooth auxiliary numbers and their exponent vectors when it
finishes [34]. By working with smaller auxiliary numbers, we can estimate a heuristic speedup by a
factor of roughly 1

2

√
log(n) log log(n) [16]. This translates to an algorithm that is about 17 times

faster when n has around 100 digits, a real practical improvement, although asymptotically the
change is only in the o(1) term of our total estimate. Robert Silverman shows that the cost of
changing the polynomial that generates the auxiliary numbers is small compared to the runtime
benefits of parallelization, smaller auxiliary numbers, and smaller sieve sizes [34], cementing the
beneficial status of the multiple polynomial version of the Quadratic Sieve.

2.3.3 Large Primes

Another improvement to the Quadratic Sieve involves a clever way of creating additional smooth
auxiliary numbers. Imagine Q(x) = x2 − n generates our auxiliary numbers, and after sieving,
we find that Q(x1) and Q(x2) are not pB-smooth, i.e. are not transformed to one by the sieve
process, but have an additional shared large prime factor L. So Q(x1) = x21 − n = u · L and
Q(x2) = x22 − n = v · L, where u, v are pB-smooth. Then(x1x2

L

)2
≡ u · v (mod n),

meaning we have created an equivalence of the form x2 ≡ a (mod n) where a is pB-smooth, which
is exactly our goal when generating the auxiliary numbers anyway.

We can apply this insight to every auxiliary number Q(xi) by storing a list of tuples (xi, Li) that
records the remaining large factor after each Q(xi) has been sieved. We can sort this list by Li in
O(M log(M)) time, if M is the number of auxiliary numbers generated, and then do O(M) pairwise
comparisons to find auxiliary numbers with shared large factors. Once we identify numbers with
shared Li we can generate new pairs (x, a), where x2 ≡ a (mod n) and a is pB-smooth, in the
manner demonstrated above. It is a consequence of the problem often referred to as the “birthday
paradox” that we expect to find many pairs of (xi, Li) with matching large prime factors Li once
we have generated enough auxiliary numbers [14].

If we can get additional smooth auxiliary numbers by matching large prime factors, we will need
to generate fewer auxiliary numbers using quadratics, and do less sieving, to find enough relations
to get the linear dependence we need. This slightly reduces the size of the typical auxiliary number
used by the algorithm, only affecting the o(1) term in the asymptotic complexity of the Quadratic
Sieve but practically resulting in a speedup of more than a factor of two [5][22].

The large prime insight can be further extended to allow L to be the product of two large primes.
This is known as the Double-Large Prime variation of the Quadratic Sieve, and has been shown to
additionally improve the performance of the sieving algorithm [16].

This concludes our discussion of the Quadratic Sieve. In the next chapter, we will examine the
Number Field Sieve, which improves on the framework of the Quadratic Sieve and reduces the
runtime of the sieve step from Ln[1/2, 1] to Ln[1/3, (64/9)1/3].
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3 The Number Field Sieve

3.1 From the Quadratic Sieve to the Number Field Sieve

At the heart of both the Quadratic and the Number Field Sieve is Maurice Kraitchik’s insight that
if one can find u, v such that u2 ≡ v2 (mod n) and u 6≡ ±v (mod n), it is possible to obtain a
nontrivial factor of n by computing gcd(u− v, n). Both algorithms use a sieve, and accompanying
factor base, to construct the desired values u and v, but they differ in how they select numbers
for use in the sieve. The Quadratic Sieve algorithm uses the function Q(x) = x2 − n to generate a
long sequence of auxiliary numbers, some subset of which will multiply together to create v2. Due
to the quadratic nature of Q(x), we immediately have v2 ≡ u2 (mod n) for u equal to the product
of the x-values corresponding to the auxiliary numbers that compose v2. The fact that a subset of
auxiliary numbers will multiply together to produce a square is guaranteed by linear algebra, as
long as we can find π(Y ) + 2 auxiliary numbers that are Y -smooth. Thus Q(x) being quadratic
creates a square on one side of our congruence, and the remaining square is generated using a linear
algebra technique that requires only a sufficient quantity of smooth numbers.

The Number Field Sieve modifies the principle behind the Quadratic Sieve in one critical way — it
uses this linear algebra technique to generate squares on both sides of the congruence modulo n, thus
eliminating the need for the auxiliary numbers to be generated by a quadratic function. Instead,
the Number Field Sieve requires pairs of the form (θ, φ(θ)), where θ lies in an algebraic number
ring and φ is a homomorphism from that ring to Z/nZ. The goal is to find k pairs (θi, φ(θi)) with
the property that θ1 · · · θk = γ2, for some γ in the number ring, and φ(θ1) · · ·φ(θk) ≡ v2 (mod n),
with v ∈ Z. Letting φ(γ) ≡ u (mod n), we would then have

u2 ≡ φ(γ)2 ≡ φ(γ2) ≡ φ(θ1 · · · θk) ≡ φ(θ1) · · ·φ(θk) ≡ v2 (mod n),

at which point, after verifying that u 6≡ ±v (mod n), we can apply Kraitchik’s trick to find a
nontrivial factor of n by computing gcd(u − v, n). In Section 3.3, we give the specifics of this
algorithm and discuss its asymptotic advantages over the Quadratic Sieve. To do so, we rely on
some results from algebraic number theory, which are presented in Section 3.2.

3.2 Results from Algebraic Number Theory

The linear algebra technique used in the Quadratic Sieve requires generating a sufficient number
of smooth quadratic residues. To extend this practice to the Number Field Sieve, we need to
develop some results about prime ideals in number rings. Let f(x) = xd + cd−1x

d−1 + · · · + c0 be
an irreducible polynomial in Z[x], and let α be a complex root of f . Let Z[α] = Z[x]/(f(x)) be the
number ring. For the remainder of this section, the phrase “prime ideals” will be used to refer to
non-zero prime ideals.

Lemma 2. [31] Let O be the ring of algebraic integers in Q(α). Then nonzero ideals in O factor
uniquely into prime ideals over O.

Proof: The ring of algebraic integers is a Dedekind domain. Every Dedekind domain has the prop-
erty that all nonzero ideals factor uniquely into prime ideals.

We define a few different measurements for ideals and elements.
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Definition 5. (Element Norm) [16] Recall f(x) = xd + cd−1x
d−1 + · · ·+ c0. Let α1, . . . , αd be the

complex roots of f(x), with α1 = α, and let β = s0 +s1α+ · · ·+sd−1α
d−1 ∈ Q[α]. Define the norm

of β to be the determinant of the map that sends x→ βx. We have

N(β) =

d∏
j=1

(s0 + s1αj + · · ·+ sd−1α
d−1
j ).

The norm is a rational number, and if all the si are integers, then N(β) is an integer as well.

Making use of the complex roots, we can write f(x) = (x−α1) · · · (x−αd). Letting a, b ∈ Z, b 6= 0,
we can get a new expression for the norm of a+ bα:

N(a+ bα) = (a+ bα1) · · · (a+ bαd) = (−b)d
( a

−b
− α1

)
· · ·
( a

−b
− αd

)
= (−b)df

( a

−b

)
.

Definition 6. (Trace) [16] Recall the descriptions of f(x), α1, . . . , αd, and α from Definition 5.
Represent β ∈ Q(α) by β = s0 + s1α+ · · ·+ sd−1α

d−1, with si ∈ Q. The trace of β is

tr(β) =

d∑
j=1

(s0 + s1αj + · · ·+ sd−1α
d−1
j ).

The trace is Q-linear, and if all the si are integers, then tr(β) is an integer as well.

Definition 7. (Order) [27] Let O be the ring of algebraic integers in Q(α). Say A ⊂ O is an order
of Q(α) if it is a subring (with 1) with the property that the index |O : A| is finite.

Observe that Z[α] is an order of Q(α). It is to this order that we will eventually apply many of the
definitions and results that follow.

Definition 8. (Ideal Norm) [11] Let A ⊂ O be an order as in Definition 7. The ideal norm Na
of a nonzero ideal a ⊂ A is |A/a|.

Lemma 3. [11] If p ⊆ Z[α] is a prime ideal, then p contains a unique prime number p and Z[α]/p
is a finite field.

Proof: We give proof of this statement for a general order A. For a nonzero x ∈ A, we have
#(A/xA) = |N(x)| [11]. As |N(x)| is finite, this implies that for every nonzero ideal a ⊂ A, A/a
will also be finite. If p ⊂ A a nonzero prime ideal of A, then not only is A/p finite, but it is also an
integral domain. Being a finite integral domain, A/p is then a field, and so p is a maximal ideal of
A and thus must contain a unique prime number p ∈ Z.

Definition 9. (Degree) [11] The degree of a prime ideal p is [Z[α]/p : Fp], where p is the unique
prime associated with p.

Definition 10. (R(p)) [16] Recall f(x) = xd + cd−1x
d−1 + · · ·+ c0. Let

R(p) = {r ∈ [0, 1, . . . , p− 1] | f(r) ≡ 0 (mod p)}.

Lemma 4. [11] There is a one-to-one correspondence between pairs (p, r), where p is a prime
number and r ∈ R(p), and degree one prime ideals p ⊆ Z[α]. For each pair (p, r), we have p =
(p, α− r).
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Proof: Assume p is a degree one prime ideal. By definition, we have Z[α]/p ∼= Fp. Consider the
map ϕ : Z[α]→ Fp with kernel p. Then ϕ sends α, a root of f , to r (mod p), a root of f (mod p).
This gives a relationship between a prime ideal p and a pair (p, r), with p a prime and r ∈ R(p).

In the other direction, let p be a prime and r ∈ R(p). There is a unique ring homomorphism
φ : Z[α] → Fp that sends α to r (mod p). The kernel of φ will be a first degree prime p of Z[α].
This establishes an injective relationship in the other direction, completing the proof.

Definition 11. (ep,r) [11] Let gcd(a, b) = 1. Let p be a prime and r ∈ R(p), as defined in Definition
10. Define

ep,r(a+ bα) =

{
ordp(N(a+ bα)) a+ br ≡ 0 (mod p)

0 otherwise,

where ordp(k) is the number of factors of p in k. Observe that

N(a+ bα) = ±
∏

p prime,r∈R(p)

pep,r(a+bα).

We introduce a proposition that relates the ideal norm and the element norm in Z[α] via a group
homomorphism. Then, we give a corollary that relates the values taken by this homomorphism to
ep,r.

Proposition 1. [11] For each prime ideal p ⊂ A, with A an order as in Definition 7, there exists
a group homomorphism lp : (Q(α))∗ → Z such that

1. lp(β) ≥ 0 for all β ∈ A\{0}.

2. If β ∈ A\{0}, then lp(β) > 0⇔ β ∈ p.

3. for each β ∈ (Q(α))∗, we have lp(β) = 0 for all but finitely many p and∏
p

(Np)lp(β) = |N(β)|,

where the product is over all prime ideals p ⊂ A.

Proof: First, we show how to construct lp, and then show that this homomorphism satisfies the
listed properties. Let p ⊂ A be a prime, and β ∈ A\{0}. Since βA is of finite index in A, there is a
finite chain of ideals

A = a0 ⊃ a1 ⊃ · · · ⊃ at = βA

such that ai−1/ai is a field, that is, there are no proper ideals between ai−1 and ai. We define lp(β)
to be the number of i between {1, 2, . . . , t} such that ai−1/ai ∼= A/p. It is a consequence of the
Jordan-Hölder Theorem that lp(β) does not depend on the choice of the ideal chain a0, . . . , at.

If x and y are nonzero elements of A, and a0, . . . , at, b0, . . . , bu, the corresponding chains of ideals,
we can combine the chains to form a large chain a0, . . . , at = xb0, . . . , xbu. This demonstrates
that lp(xy) = lp(x) + lp(y). Every z ∈ (Q(α))∗ can be written as x/y, for x, y ∈ A. By letting
lp(x/y) = lp(x)− lp(y), we can extend lp to a group homomorphism on (Q(α))∗. By construction,
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we can observe that property (1) holds.

Next we verify the existence of property (2). If β ∈ p, we can take a1 = p, since we know that p is
maximal (see proof of Lemma 3). Then a0/a1 = A/p, and so by definition we know lp(β) ≥ 1. If
β 6∈ p, since p is maximal, we know that βA+ p = A. Then βy + z = 1 for some y ∈ A, z ∈ p. In
other words, we know that z ≡ 1 (mod βA), meaning multiplication by z is the identity map from
A/βA → A/βA. Then z · (ai−1/ai) = ai−1/ai for all i. Since z ∈ p, if ai−1/ai ∼= A/p, we would
expect z · (ai−1/ai) = 0, and so it must be that ai−1/ai 6∼= A/p for any i. Hence lp(β) = 0 in the
case that β 6∈ p. This concludes the proof of property (2).

It is sufficient to prove property (3) only in the case where β ∈ A, since N(x/y) = N(x)/N(y) and
lp(x/y) = lp(x)− lp(y). Recall from the proof of Lemma 3 that |N(β)| = |A/βA| =

∏t
i=1 |ai−1/ai|.

Then, to show equivalence between this product and the one given in property (3), we need to
show that for each i there is only one prime ideal p ⊂ A with ai−1/ai ∼= A/p, as Np = |A/p|. Let
y ∈ ai−1, y 6∈ ai. As there is no proper ideal between ai and ai−1, we have yA + ai = ai−1. Thus
yA/ai ∼= ai−1/ai, and so multiplication by y gives a surjective map from A → ai−1/ai. Letting p
be the kernel of this surjective map, we have A/p ∼= ai−1/ai. Since ai is maximal in ai−1, we know
ai−1/ai is a field with no proper ideals. Thus p is a maximal ideal, and therefore a prime ideal.
Since p is also the annihilator of ai−1/ai, we know that p is unique. Thus we have

|N(β)| = |A/βA| =
t∏
i=1

|ai−1/ai| =
∏
p

|A/p|lp(β) =
∏
p

(Np)lp(β),

completing the proof of property (3).

In the case where A = O, with β ∈ O, β 6= 0, we can use Lemma 2 to write βO = p1p2 · · · pt. Letting
ai = p1p2 · · · pi, we can see that lp(β) is the exponent of the power of p dividing βO. Thinking of
lp as the exponent of a prime ideal is helpful in intuiting the connection between lp and ep,r, which
corresponds to an exponent of a prime number. Corollary 1 further develops this connection.

Corollary 1. [11] Let a, b be coprime integers, and let p ⊆ Z[α] be a prime ideal. If p does not
have degree one, then lp(a+ bα) = 0. If p is of degree one, and corresponds to the pair (p, r), with
p a prime integer and r ∈ R(p), then lp(a+ bα) = ep,r(a+ bα).

Proof: Let p ⊆ Z[α] be a prime ideal, and let p be the unique prime integer contained in p, which
exists by Lemma 3. Assume lp(a + bα) > 0. We use the quotient map Z[α] → Z[α]/p throughout
the proof.

By Proposition 1, we then know that a+ bα ∈ p, and so a+ bα = 0 ∈ Z[α]/p. If p|b, then bα = 0 in
Z[α]/p, which would imply that a = 0 in this quotient ring as well, suggesting that p|a. However,
a and b are assumed to be coprime, so this is a contradiction. Therefore it must be the case that
b maps to a nonzero element of Z[α]/p. Recall from Lemma 3 that Z[α]/p is a field, and so there
exists some b′ which is the inverse of the image of b in Z[α]/p. We know that b′ ∈ Fp ⊂ Z[α]. Since
a + bα = 0 ∈ Z[α]/p, we can solve for α and see that α = −ab′ in this field. As −ab′ ∈ Fp, this
implies that every element in Z[α] maps into Fp under the quotient map Z[α]→ Z[α]/p, confirming
that p has degree one.

21



If p corresponds to the pair (p, r), we can see that r is also determined by the equation a+ br ≡ 0 (mod p).
Since the pair (p, r) is unique, this confirms that p is the unique prime ideal of Z[α] containing
both p and a + bα. Then the statement that lp(a + bα) = ep,r(a + bα) follows by comparing the
power of p on both sides of the equation in part three of Proposition 1, with β = a + bα. On
the left hand side, we are looking for ideals p′ with Np′ = pk such that a + bα ∈ p′, so that
lp′(a + bα) > 0. This means that p′ must be a prime ideal containing both p and a + bα, and the
only such ideal is p. So we have plp(a+bα) on the left hand side. On the right hand side, we have
|N(a + bα)| = |

∏
p prime,r∈R(p) p

ep,r(a+bα)|. There is only one value of r such that ep,r(a + bα) 6= 0,

and so on the right hand side we have pep,r(a+bα). Since the left and right hand sides are equal, we
can conclude that lp(a+ bα) = ep,r(a+ bα). This completes the proof.

Finally, we introduce a lemma that gives a natural relationship between an element in O, the ring
of algebraic integers of Q(α), and an element in Z[α].

Lemma 5. [16] Let f(x) be a monic irreducible polynomial in Z[x], with α a complex root of f .
Denote by O the ring of algebraic integers in Q(α). Let γ ∈ O. Then f ′(α)γ ∈ Z[α].

Proof: Let

f(x)/(x− α) =

d−1∑
j=0

βjx
j ,

with each βj ∈ Q(α). By [36, Proposition 3-7-12], originally attributed to Euler, we know that
β0/f

′(α), . . . , βd−1/f
′(α) forms the dual basis to the Q-basis 1, α, . . . , αd−1 with respect to the

pairing 〈x, y〉 = tr(x, y). Furthermore, we know that each βj ∈ Z[α] and that the trace of αkβj/f
′(α)

equals 1 if j = k and 0 otherwise. Using our basis, we can find rational numbers s0, . . . , sd−1 such
that

γ =

d−1∑
j=0

sj · (βj/f ′(α)).

Multiplying both sides by αk, we get γαk =
∑d−1

j=0 sj · (αkβj/f ′(α)). Then taking the trace of each
side, we have

tr(γαk) =
d−1∑
j=0

sj · tr(αkβj/f ′(α)),

since the trace is Q-linear. Recalling from [36, Proposition 3-7-12] that the term tr(αkβj/f
′(α)) is

0 unless j = k, and 1 in the case of equality, the only non-zero term in the summand is sk, and we
see that tr(γαk) = sk for k equalling 0, 1, . . . , d− 1. Since γ and α are both in O, the product γαk

is as well, and so by Definition 6 we know tr(γαk) ∈ Z. We also know tr(γαk) = sk, and so we can
conclude sk ∈ Z for all sk. Given this fact, and the fact from Euler that each βk ∈ Z[α], we can
observe that f ′(α)γ =

∑d−1
j=0 sjβj ∈ Z[α], completing the proof.

3.3 The Number Field Sieve

We first preview the major steps in the algorithm, before getting into the details of each phase.
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Algorithm 2. (Number Field Sieve Overview) [16] Let n be an odd, composite integer that is not
a prime power.

1. Let f(x) = xd + cd−1x
d−1 + · · · + c0 be an irreducible polynomial in Z[x], and let α be a

complex root of f .

2. Let Z[α] = Z[x]/(f(x)) be the number ring. Elements in Z[α] are polynomials in α with
integer coefficients. Since f(α) = 0, these polynomials can have degree at most d− 1.

3. Let m be an integer such that f(m) ≡ 0 (mod n).

4. Define φ : Z[α]→ Z/nZ, where

φ(a0 + a1α+ · · ·+ ad−1α
d−1) = a0 + a1m+ · · ·+ ad−1m

d−1 (mod n).

5. Consider elements θ ∈ Z[α] which take the form θ = a + bα, with a, b ∈ Z. We assume
gcd(a, b) = 1 to avoid trivial redundancy.

6. Find a set S of coprime integer pairs (a, b) such that

(a) ∏
(a,b)∈S

(a+ bm) = v2

(b) ∏
(a,b)∈S

(a+ bα) = γ2

with v ∈ Z and γ ∈ Z[α].

7. Compute v =
√
v2 and γ =

√
γ2.

8. Let u = φ(γ). Compute gcd(u− v, n).

The description of the Number Field Sieve given in Algorithm 2 leaves many questions unanswered.
Why should we expect this procedure to be more powerful than the Quadratic Sieve? How do we
find f(x) and m? How do we build the set S? How do we take square roots in Z[α]? The next
four subsections will address these issues, and in Section 3.3.5 we will finally give a more complete
description of the algorithm.

3.3.1 Finding f(x) and m.

The first step in finding f(x) is deciding upon d, the desired degree of the polynomial. In Section

3.3.4, we will describe a heuristic argument that suggests a choice of d ∼
( 3 log(n)
log log(n)

)1/3
. In practice,

we often choose d to be 4 or 5 when n is approximately 130 digits [16][17].

Once d has been determined, constructing f(x) and finding m is straightforward. Perhaps coun-
terintuitively, we fix m first, letting m = bn1/dc. Then we write n in base m, so that

n = md + cd−1m
d−1 + . . .+ c1m+ c0,
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and 0 ≤ ci < m for all ci. This expression suggests a natural choice for f(x), namely

f(x) = xd + cd−1x
d−1 + · · ·+ c1x+ c0,

as this construction guarantees f(m) ≡ 0 (mod n). However, nothing about our construction en-
sures that f(x) is irreducible. Nearly all polynomials are irreducible, but in the case that f(x)
is not, we can use the polynomial-time algorithm of Lenstra, Lenstra, and Lovász [23] to write
f(x) = g(x)h(x). Then we have n = f(m) = g(m)h(m), and it is a result of Brillhart, Filaseta, and
Odlyzko that this factorization of n will be nontrivial [8]. Since our ultimate goal is to factor n,
the “failure” of producing a reducible f(x) should instead be interpreted as an efficient, successful
completion of the task at hand. So in this unlikely scenario, we are not really troubled, as we are
still able to obtain the desired factorization of n.

Finally, we mention that it is not necessary to numerically compute α, the chosen complex root of
f , until Step 7 of Algorithm 2 [16]. For now, it suffices to use the symbol α as a placeholder. In
any case, computing the roots of a polynomial is a fairly simple task compared to the work done
in Step 6 of the algorithm, where S is built.

3.3.2 Building S

Elements (a, b) in the set S must satisfy two criteria. The first is that the product
∏

(a,b)∈S(a+bm)
must be equal to a square. The task of identifying the correct subset of numbers G(a, b) = a+ bm
that will do this is analogous to the task of identifying the subset of auxiliary numbers Q(x) = x2−n
that multiplied to a square in the Quadratic Sieve, and we can use an approach similar to that used
in the Quadratic Sieve to tackle this problem. That is, for some Y , we wish to identify numbers
G(a, b) that are Y -smooth, and compute their exponent vectors modulo 2. Once π(Y ) + 2 smooth
numbers have been found, we can use linear algebra to find a subset that will multiply to a square.
Again, we can use a sieve to quickly identify Y -smooth numbers. Since we have two variables to
work with in G(a, b), as compared to the one variable of Q(x), we can fix a, sieve over several values
of b, then fix a new value of a, and sieve again over values of b, repeating this process until enough
Y -smooth numbers G(a, b) have been discovered. Thus the process for finding a set S that satisfies
the first criterion is familiar.

However, we also need S to satisfy a second criterion — we need
∏

(a,b)∈S(a+bα) = γ2, for γ ∈ Z[α].
Though the method for satisfying this criterion is broadly similar to that used for the first criterion,
there are a few additional challenges, as we are now working in Z[α], rather than Z. To perform
sieving and do linear algebra, we need some way of relating elements in Z[α] with elements in Z.
We use the norm of a + bα, defined in 5, to do this conversion. Since the norm is multiplica-
tive, meaning that N(ββ′) = N(β)N(β′), we cannot have

∏
(a,b)∈S(a + bα) = γ2 ∈ Z[α] unless

N(
∏

(a,b)∈S(a + bα)) = u2 for some u ∈ Z. This provides some motivation for utilizing N(a + bα)
in the Number Field Sieve construction.

Letting

F (x, y) = xd + cd−1x
d−1y + · · ·+ c0y

d = ydf
(x
y

)
be the homogeneous form of f , we can write N(a + bα) = F (a,−b). If we wanted to find a set S
of integer pairs (a, b) so that

∏
(a,b)∈S F (a,−b) = u2, for u ∈ Z, we could do this through sieving
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and exponent vectors the same way we were able to find a set S′ such that
∏

(a,b)∈S′(a+ bm) = v2.
Recalling that G(a, b) = a+bm, we could even guarantee that the same set S satisfied both criteria
by sieving over values of the function H(a, b) = F (a,−b)G(a, b) and creating a doubly-long expo-
nent vector that records the parity of primes in F (a,−b) and G(a, b) separately, then performing
the linear algebra step when 2π(Y ) + 3 smooth values are identified.

Unfortunately, though it is necessary that N(
∏

(a,b)∈S(a + bα)) be a square if
∏

(a,b)∈S(a + bα) is
a square, this condition is not sufficient – it is possible for this norm to be square without the
product in the number ring being square. Take, for example, the number 5 in the ring Z[i]. We can
write 5 = (2 + i)(2 − i) and see that 5 is not a square, whereas N(5) = 25 = 52 is. The problem
here is that the two prime factors of 5 in Z[i], which are (2 + i) and (2− i), have the same norm,
even though they are distinct. If we want to work with norms, instead of dealing with elements in
Z[α] directly, we will need some way of preserving this type of distinction in order to manufacture
products β where both β ∈ Z[α] and N(β) ∈ Z are squares. To do this, we have to record some
additional information in our exponent vectors.

Recall the definition ofR(p) from Definition 10. If gcd(a, b) = 1, we can see that F (a,−b) ≡ 0 (mod p)
if and only if a ≡ −br (mod p) for some r ∈ R(p). This means that in our sieve, when we iden-
tify some prime p that divides F (a,−b), we know there is a corresponding r ∈ R(p) such that
a+ br ≡ 0 (mod p). We can keep track of this r in our exponent vector as well, creating separate
coordinate entries (p, r) for each r ∈ R(p). This means that our exponent vectors will contain π(Y )
coordinates that record the parity of primes in G(a, b), followed by Y ′ coordinates recording the par-
ity of primes associated with a specific r in F (a,−b), with Y ′ = #{(p, r) : p < Y, p prime, r ∈ R(p)}.
We expect Y ′ ≈ π(Y ), as most p only have r associated with them [11]. We will refer to this special
representation associated with the sieving of F (a,−b) as an extended exponent vector. Example 6
shows how documenting this added information can preserve distinctions between primes in Z[α]
with the same norm.

Example 6. We revisit our earlier discussion of Z[i] = Z[x]/(x2 + 1), and the question of whether
or not (2 + i)(2 − i) = 5 ∈ Z[i] is a square. The elements 2 − i and 2 + i each have norm
5, so we will carry primes up to 5 in our exponent vectors. The first step is then to compute
R(p) = {0 ≤ r < p | r2 + 1 ≡ 0 (mod p)} for p = 2, 3, and 5. We get R(2) = {1}, R(3) = ∅, and
R(5) = {2, 3}, so our extended exponent vectors will have three coordinates corresponding to pairs
(p, r): (2, 1), (5, 2), and (5, 3).

Since 5|N(2− i) = F (2, 1), we need to identify r ∈ R(5) such that 2+r ≡ 0 (mod 5). Since r = 3 in
this case, the exponent vector for 2− i takes the form (0, 0, 1). We also have 5|N(2 + i) = F (2,−1),
but in this case the r ∈ R(5) that makes 2− r ≡ 0 (mod 5) is 2, so the exponent vector for (2 + i)
is (0, 1, 0). Adding the exponent vectors for 2 − i and 2 + i, we get (0, 1, 1) 6≡ (0, 0, 0) (mod 2),
which corresponds to the fact that (2 + i)(2− i) = 5 is not a square in Z[i].

Note that if we had not kept separate coordinates in the exponent vector for each r ∈ R(p), the
exponent vectors for both 2 + i and 2− i would have been (0, 1), the sum of which would have been
equivalent to (0, 0) (mod 2).

Theorem 2 states that if a product is a square in Z[α], the sum of the extended exponent vectors
of the norms of its factors, with coordinates for each pair (p, r) with r ∈ R(p), instead of just for
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each prime p, will be congruent to the zero vector modulo 2. This suggests that requiring this more
stringent restriction on the exponent vectors will help to ensure that products found in the linear
algebra step with square norms in Z are more likely to correspond to squares in Z[α].

Recall the meaning of ep,r(a+ bα) from Definition 11. Observe that ep,r(a+ bα) describes the value
of the (p, r)th coordinate in the extended exponent vector. We are now ready to state Theorem 2.

Theorem 2. [11] Let S be a finite set of coprime integer pairs (a, b) such that
∏

(a,b)∈S(a+bα) = γ2,
for some γ ∈ Q(α). Then for each prime p and r ∈ R(p), we have∑

(a,b)∈S

ep,r(a+ bα) ≡ 0 (mod 2).

Proof: Assume
∏

(a,b)∈S(a+ bα) = γ2 and let p be the degree one prime ideal corresponding to the
pair (p, r), which exists by Lemma 4. Recall the group homomorphism lp : (Q(α))∗ → Z from
Proposition 1. Then we can write∑

(a,b)∈S

ep,r(a+ bα) =
∑

(a,b)∈S

lp(a+ bα) = lp

( ∏
(a,b)∈S

(a+ bα)
)

= lp(γ
2) = 2lp(γ) ≡ 0 (mod 2),

where the first equality follows from Corollary 1 and the second and fourth equalities follow from
the fact that lp is a group homomorphism over a multiplicative group.

In order for our sieving-linear algebra approach to guarantee success, we would need the converse
of Theorem 2 to hold as well. Unfortunately, there are cases where it is possible to satisfy such
a condition on the extended exponent vector of the norm without producing a square in Z[α].
However, these end up being the minority of cases [11, Theorem 6.7], and we will see that we are
able to overcome this lack of a full converse with some additional machinery.

We briefly reframe the problem at hand to make clear the cases where the converse of Theorem 2
fails. We are trying to find a set S of coprime integer pairs (a, b) such that

∏
(a,b)∈S a+ bα = γ2, for

γ ∈ Z[α]. We approach this task by replacing each element a+ bα with its norm and using a sieve,
looking for Y -smoothness of the norm over a factor base consisting of pairs (p, r), with p a prime
number and r ∈ R(p). If we find enough candidates a+ bα with smooth norms, we can use linear
algebra to find a subset S of pairs (a, b) such that

∑
(a,b)∈S ep,r(a + bα) ≡ 0 (mod 2) for all pairs

(p, r). Recalling that each pair (p, r) corresponds to a unique degree one prime ideal p (Lemma 4)
gives us a better sense of what this sieve is actually doing. If p is the ideal specified by (p, r), then
ep,r(a + bα) is the number of factors of p in the ideal (a + bα)O, where O is the ring of algebraic
integers in Q(α). By Lemma 2, nonzero ideals in O factor uniquely into prime ideals over O; in
our sieve, we are looking for pairs (a, b) such that the ideal (a+ bα)O factors completely over the
degree one prime ideals of Z[α] with norms below a threshold Y .

Let
∏

(a,b)∈S(a + bα) = β, and suppose
∑

(a,b)∈S ep,r(a + bα) ≡ 0 (mod 2) for all (p, r). There are

four reasons why we might not have β = γ2 for any γ ∈ Z[α]. If Z[α] = O, it is clear by our con-
struction of the exponent vectors that the linear algebra step will produce β such that βO = J2,
for J ⊂ O an ideal. The earliest potential obstruction thus occurs in the case where Z[α] ( O.
Obstructions 2-4 reveal that even if βO = J2 for an ideal J ⊂ O, we cannot immediately conclude
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that β = γ2 for γ ∈ Z[α] an element. The obstructions are listed below.

Obstructions:

1. If Z[α] ( O, since our factor base only contains prime ideals in Z[α], we may not have
βO = J2 for J ⊂ O an ideal.

2. Even if βO = J2 for J ⊂ O an ideal, J may not be a principal ideal.

3. Even if βO = γ2O for γ ∈ O an element, that does not mean β = γ2.

4. Even if β = γ2 for γ ∈ O, we might not have γ ∈ Z[α].

We begin by addressing the last possible obstacle to our goal, obstruction 4. Suppose we have
β = γ2 for γ ∈ O\Z[α]. We can use Lemma 5 from Section 3.2 to handle this obstruction. If we
have β = γ2 for γ ∈ O\Z[α], Lemma 5 tells us that f ′(α)γ ∈ Z[α]. Then

f ′(α)2γ2 = f ′(α)2β = f ′(α)2
∏

(a,b)∈S

(a+ bα)

is the square of an element in Z[α]. We can let u = φ(f ′(α)γ). If
∏

(a,b)∈S(a + bm) = v2, we can

define w = vf ′(m) (mod n), which gives us u2 ≡ w2 (mod n). We can assume gcd(f ′(m), n) = 1,
as otherwise, we would have a factorization of n. Then, multiplying v by f ′(m) to get w will not
affect the likelihood of factoring n by computing gcd(u − w, n). So Lemma 5 gives an extremely
straightforward solution to the fourth possible obstruction.

Obstructions 1-3 arise because, due to the nature of the exponent vectors we use in our sieve, we are
currently trying to procure the squareness of βO as an ideal, where β =

∏
(a,b)∈S(a+ bα), instead

of dealing directly with the squareness of β. Adding a few components to these exponent vectors,
however, can help us to specify properties of β itself, and not just its associated ideal.

The strategy for overcoming the first three obstructions is due to Adleman [1] who adapts a square-
recognition method more familiar in the integers. In the integers, if a number is a square, it must
also be a square in Z/qZ, for any odd prime q. We can get information about an integer m by
asking if m is a quadratic residue modulo q, i.e. if

(
m
q

)
= 1. If m is a quadratic residue modulo

q1, . . . , qk, where each qi < |m| and the qi’s are distinct odd primes, we can pretty confident that m
is indeed a square, as the probability of this happening when m is not square is about 2−k,3 which
is small for k large. When factoring via the Number Field Sieve, we wish to use a similar trick to
determine if the algebraic integer β is square. Lemma 6 shows how this is possible.

Lemma 6. [16] Let f(x) be a monic, irreducible polynomial in Z[x] and let α be one of its complex
roots. Suppose q is an odd prime number and s is an integer such that f(s) ≡ 0 (mod q) but
f ′(s) 6≡ 0 (mod q). Let S be a set of coprime integer pairs (a, b) such that q - a + bs for all
(a, b) ∈ S and f ′(α)2

∏
(a,b)∈S(a+ bα) = γ2, with γ ∈ Z[α]. Then∏

(a,b)∈S

(a+ bs

q

)
= 1.

3This probability comes from the fact that about half of quadratic residues are 1, and by the Chinese Remainder
Theorem behavior modulo different primes qi is independent.
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Proof: Consider the homomorphism φq : Z[α]→ Z/qZ, where φq(α) is the residue class s (mod q).
We can write

φq(γ
2) ≡ f ′(s)2

∏
(a,b)∈S

(a+ bs) 6≡ 0 (mod q),

as f ′(s) 6≡ 0 (mod q) and a+ bs 6≡ 0 (mod q) by the hypothesis. Then
(φq(γ2)

q

)
= ±1. Since φq is

a homomorphism, we can write (φq(γ2)
q

)
=
(φq(γ)2

q

)
= 1,

since a square is clearly a quadratic residue. As
(f ′(s)2

q

)
= 1 as well, using the fact that the Legendre

symbol is multiplicative, we can deduce that∏
(a,b)∈S

(a+ bs

q

)
= 1.

Once again, this time via Lemma 6, we have given a necessary condition to find a set S from which
we can get a product that is a square in Z[α], when what we are really looking for is a sufficient condi-
tion. However, there is strong evidence to suggest that by combining the condition of Lemma 6 with
the condition from Theorem 2, it will be overwhelmingly likely that f ′(α)2

∏
(a,b)∈S (a+ bα) = γ2.

We introduce some notation to make this conjecture clear.

Definition 12. [11] Define

V = {β ∈ Q(α)∗ : lp(β) ≡ 0 (mod 2) for all prime ideals p ⊂ Z[α].}

V is a multiplicative group.

Definition 13. [11] Define K = {x2 : x ∈ Q(α)∗}. Since lp is a homomorphism, we can see that
K ⊂ V. Furthermore, the quotient V/K is seen to be a vector space over F2.

Definition 14. [11] Let q ⊂ Z[α] be a degree one prime with f ′(α) 6∈ q. Define χq : Z[α] → {±1}
to be the composition of φq from the proof of Lemma 6 with the Legendre symbol over q. (Here q
is the unique prime corresponding to q.) We can see that χq induces a homomorphism from V/K
to {±1}, which with a slight abuse of notation we’ll again denote by χq.

Elements in V can be found by doing sieving/linear algebra with the conditions mentioned in
Theorem 2. We would like to find elements in K ⊂ V , however, as these are the squares. Buhler,
Lenstra, and Pomerance [11, Theorem 6.7] showed that dimF2(V/K) is small — this is what allows
us to claim that the converse to Theorem 2 holds in most cases. This fact, combined with a
choice of prime ideals q1, . . . , qk corresponding to odd primes q1, . . . , qk, with k sufficiently large,
makes it highly likely that the functions χq1 , . . . , χqk span Hom(V/K, {±1}). If they do span,
then the condition that χqi(β) = 1 for all qi is both necessary and sufficient for guaranteeing
that β is a square. This suggests that, with k sufficiently large, q1, . . . , qk odd primes such that
qi - N(a + bα)∀(a, b) ∈ S, and sj ∈ R(qj) for j = 1, . . . k such that f ′(sj) 6≡ 0 (mod q)i, then
satisfying both
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1.
∑

(a,b)∈S ep,r(a+ bα) ≡ 0 (mod 2)∀(p, r)

2.
∏

(a,b)∈S

(
a+bsj
qj

)
= 1 for j = 1, . . . , k

almost certainly means that ∏
(a,b)∈S

(a+ bα) = γ2

for some γ ∈ O, giving us sufficiency in practice.

How large does k need to be? By placing some conditions on the polynomial f(x) defined in Section
3.3.1 — namely, requiring its degree d to satisfy d2d

2
< n and its coefficients cj to satisfy |cj | < n1/d

— we can choose k = b3 log(n)c [16]. Note that by this estimate, k � π(Y ) and k � Y ′, so this is
not really a significant expansion of the size of our exponent vectors. Finally, we choose the primes
qj to be as small as possible.

Despite having several additional intricacies, the idea for building S in the Number Field Sieve is
similar to the process used in the Quadratic Sieve to find the subset of auxiliary numbers which
will multiply to a square. In the Quadratic Sieve, we collected smooth auxiliary numbers, recorded
their factorizations in exponent vectors, and then used linear algebra over these exponent vectors
to find a linearly dependent subset, indicating that the corresponding auxiliary numbers would
multiply to a square. The same idea is used in the Number Field Sieve, but with a much more
complicated exponent vector to adjust for all the potential obstacles described in this section. Let-
ting Y be our smoothness bound, the first π(Y ) + 1 coordinates in the exponent vector represent
ordp(a+ bm) (mod 2) for the primes p0, p1, . . . , pπ(Y ), where we count −1 as the 0th prime. Letting
Y ′ = #{(p, r) : p prime, p < Y, r ∈ R(p)}, the next Y ′ coordinates in the exponent vector corre-
spond to ep,r(a+ bα) (mod 2) for every pair (p, r) contributing to the count of Y ′. Finally, the last
k coordinates are determined by the value of

(
a+bsi
qi

)
for the pairs (qi, si) picked according to the

conditions in Lemma 6. If
(
a+bsi
qi

)
= 1, we enter 0 into the coordinate, and if

(
a+bsi
qi

)
= −1, we

enter the value 1, to work with the group of two elements in the additive, rather than multiplicative,
context. Though this exponent vector has considerably more pieces than the exponent vector used
in the Quadratic Sieve, each piece is necessary to ensure that S satisfies both the criterion laid out
for it in Algorithm 2.

3.3.3 Taking Square Roots in Z[α]

After successfully building S, we have a set of coprime integer pairs (a, b) such that

f ′(α)2
∏

(a,b)∈S

(a+ bα) = γ2

for γ ∈ Z[α] and

f ′(m)2
∏

(a,b)∈S

(a+ bm) = v2

for v ∈ Z. By letting φ(γ) = u (mod n), we can see that

u2 ≡ φ(γ2) ≡ φ
(
f ′(α)2

∏
(a,b)∈S

(a+bα)
)
≡ φ(f ′(α)2)

∏
(a,b)∈S

φ(a+bα) ≡ f ′(m)2
∏

(a,b)∈S

(a+bm) ≡ v2 (mod n).
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Then we can factor n by computing gcd(u− v, n). However, this operation is contingent on being
able to determine u from γ2. Finding v =

√
v2 in the integers is relatively straightforward, as we

have the prime factorization of v2/(f ′(m)2) stored in the exponent vectors of the sieve step, and
can use this to quickly compute v (mod n). Unfortunately, there is not a similarly elegant solution
for finding γ =

√
γ2, the natural intermediary in the process to compute u.

There are several different algorithms in the literature relating to obtaining
√
γ2, following both

direct and heuristic approaches, and the choice of which to use frequently comes down to desired ease
of implementation. Here we briefly sketch Nguyen’s adaptation of Peter Montgomery’s algorithm.
For more details, refer to [26].

Algorithm 3. (Square Roots in Z[α]) [26] Let O be the ring of algebraic integers of Q(α), and
let I be the abelian group of fractional ideals in O. For x1, . . . , xj ∈ Q(α), we will let 〈x1, . . . , xj〉
denote the element of I generated by x1, . . . , xj . Let γ ∈ Z[α] be the square that we want to find
the root of.

1. Transform γ to make the fractional ideal 〈γ〉 simpler. By simpler, we refer to a reduction in
the product of the norms of the numerator and denominator of 〈γ〉.

Recall that γ is produced by our sieving step, and so γ =
∏

(a,b)∈S(a + bα). Because γ is a

square, any γ′ =
∏

(a,b)∈S(a + bα)e(a,b) , for e(a,b) ∈ {±1}, will also be a square in Q(α). The
identity [

φ
(√ ∏

(a,b)∈S

(a− bα)e(a,b)
)]2
≡
[√ ∏

(a,b)∈S

(a− bm)e(a,b)
]2

(mod n)

allows us to replace γ with γ′. By carefully selecting the signs of e(a,b), we can ensure that
〈γ′〉 is simpler than 〈γ〉.

We thus let γ = γ′.

2. Compute
√
〈γ〉 using the prime ideal factorization of 〈γ〉, which can be derived from the

prime factorization of F (a,−b) for each (a, b) ∈ S. The prime factorizations of the F (a,−b)’s
are stored in the exponent vectors of the sieving step.

3. From
√
〈γ〉, approximate

√
γ using lattice reductions. We can iteratively compute a sequence

of algebraic integers δ1, . . . , δL in O, with accompanying signs s1, . . . , sL in {±1}, such that
θ = γ

∏L
i=1 δ

−2si
i is an algebraic integer of decreasing size. Since the right hand side is a

square, we can see that θ will also be a square. We iterate until θ is sufficiently “small.”

4. Once θ is sufficiently small, it is feasible to compute
√
θ by a brute force method, at which

point we can write

√
γ =
√
θ

L∏
i=1

δsii .

One method for finding
√
θ involves solving for

√
θ modulo several primes p, and then using

the Chinese Remainder Theorem to combine these solutions.
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Nguyen [26] provides a brief discussion of the algorithm’s complexity in terms of |S|, the size of
the set S generated in Section 3.3.2. Steps 1 and 2, the simplification of γ and the computation of√
< γ >, can both be proven to take at most O(|S|) time. For Step 3, the approximation of

√
γ

using an iterative lattice reduction procedure, he is able to show that the number of iterations is
O(|S|); however, there is no provable bound on the time required for each iteration. In practice, we
know that overall time required for this step is about O(|S|), and this is supported by the argument
that since our lattice reductions are occurring on matrices with small dimensions, each iteration
should take very little time. As with Step 3, we are similarly unable to bound the cost of Step 4,
computing

√
θ, this time because we are unable to tell how many different primes we will need to

use in the Chinese Remainder Theorem component.

Though we lack a provable complexity, we know experimentally that the algorithm’s run time
is approximately linear in the size of S. It is worth noting that this difficulty in establishing a
complexity bound is not unique to Nguyen’s approach, but a challenge for many of the heuristic
algorithms used to compute square roots in Z[α] [26]. In practice, however, these approaches have
been found to be among the most efficient and are widely used. Further, it has been well established
[26][16][35] that the time to compute

√
γ2 is minor compared to the sieving step in the Number

Field Sieve algorithm.

3.3.4 An Asymptotic Analysis of the Sieve Step and Optimal Values for d and Y

The Number Field Sieve borrows much of its architecture from the Quadratic Sieve, and as such,
the approach to its asymptotic analysis remains fairly similar. Following [16], we thus begin by
briefly recapping the notation and complexity arguments used for the Quadratic Sieve.

To analyze the Quadratic Sieve, we worked under the assumption that the auxiliary numbers
generated by our quadratic Q(x) = x2 − n formed a random sequence of integers bounded by X.
Letting Y be equivalent to the largest prime we sieved for, we denoted by ψ(X,Y ) the number
of Y -smooth integers in the interval [1, X]. Then the probability of a random integer (auxiliary
number) being smooth was ψ(X,Y )/X, and the expected number of auxiliary numbers needed to
find one smooth number was the reciprocal, X/ψ(X,Y ). We needed roughly π(Y ) smooth integers
to proceed with the linear algebra step, so this quantity was multiplied by π(Y ). Finally, to check
if a given auxiliary number was Y -smooth via sieving required log(log(Y )) work. This brought the
total work of the sieving step to

π(Y ) log log(Y )X

ψ(X,Y )
.

The value of X is determined by our factoring method, but we were able to choose Y as a function
of X to minimize the amount of work required in the sieving step. We calculated an optimal value
for Y to be

Y = exp((2−1/2 + o(1))(log(X) log log(X))1/2).

Using this result, we obtained an estimate for the amount of work needed in the sieve step solely
in terms of X, getting

π(Y ) log log(Y )X

ψ(X,Y )
≈ exp((21/2 + o(1))(log(X) log log(X))1/2).
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In L-notation, we can express this estimate for the work of the Quadratic Sieve as LX [1/2, 21/2].

Much of this argument for the Quadratic Sieve carries over to the Number Field Sieve. We retain
the assumption that the numbers we are sieving over can be considered a random sequence. Ad-
ditionally, we are still looking for Y -smooth numbers, and we still expect it to take X/ψ(X,Y )
attempts before we generate one. The advantage of the Number Field Sieve, as we are about to
see, is that X is smaller, making the proportion of Y -smooth numbers in [1, X] higher. Further, we
know that auxiliary numbers are products of two smaller numbers, further increasing the likelihood
that they are smooth, though following [16], we will mostly ignore this fact as it has a very limited
impact on the asymptotic analysis. So in conclusion, as compared to the case of the Quadratic
Sieve, the estimate for X/ψ(X,Y ) with the Number Field Sieve is smaller, reducing the amount of
work in the sieve step.

Returning to the parallels between the Quadratic Sieve and Number Field Sieve, the time it takes
to sieve a number and determine if it is Y -smooth is still log log(Y ). However, we are working with
exponent vectors that are about twice as large in the Number Field Sieve, and thus will need many
more smooth numbers before we can proceed to the linear algebra step. Section 3.3.2 indicates that
instead of π(Y ) smooth numbers, we will need roughly π(Y )+Y ′+k smooth numbers. But we know
that Y ′ ≈ π(Y ) and that k � π(Y ), so the number of Y -smooth numbers needed in the Number
Field Sieve is still of order of magnitude π(Y ), and continuing to use π(Y ) in our heuristic estimate
does not significantly impact its accuracy. (Critically, our heuristic analysis in the Quadratic Sieve
case is based on the fact that π(Y ) ∼ Y/ log(Y ) by the Prime Number Theorem, and we can still
say 2π(Y ) ∼ Y/ log(Y ) with the Number Field Sieve [16].) Putting this all together, we can retain
π(Y ) log log(Y )X/ψ(X,Y ) = LX [1/2, 21/2] as an estimate for the number of steps in the Number
Field Sieve algorithm and Y = exp((2−1/2 + o(1))(log(X) log log(X))1/2) as an estimate for Y .

But what is X? In the Quadratic Sieve, we used the function Q(x) = x2 − n to generate
auxiliary numbers, which gave us a bound of X = 2n1/2+ε. In the Number Field Sieve, how-
ever, the numbers that we want to evaluate for smoothness are generated by the polynomial
H(x, y) = F (x,−y) G(x, y), where F (x, y) = xd + cd−1x

d−1y + . . .+ c0y
d, G(x, y) = x+ ym, and

the integer m and the coefficients cj are as defined in Section 3.3.1. We know that cj < m < n1/d

by construction. Say |x|, |y| are bounded by some M . Then H(x, y) is a polynomial with 2(d+ 1)
terms, homogeneous with degree d+ 1, with coefficients bounded by n2/d, giving us the bound

|H(x, y)| < 2(d+ 1)n2/dMd+1 = X.

M2 represents the number of auxiliary numbers H(x, y) we generate; certainly, we do not want
M2 > LX [1/2, 21/2], the total number of steps we expect the sieving to take based on our compu-
tation for the Quadratic Sieve, and so we can use this as a bound on M .

Our expression for X and our estimate for the number of steps required in the sieving step indicate
that our choice for d affects the size of X, and the size of X determines the number of steps needed
in the Number Field Sieve. Thus we want to choose d to minimize X. To deal with fewer exponents,
however, we will work with log(X) rather than X. Substituting in our bound on M , we get that

log(X) ∼ log(2(d+ 1)) +
2

d
log(n) + (d+ 1)

√
1

2
log(X) log log(X).
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The term log(2(d + 1)) makes a negligible contribution to the sum, so in future analysis we will
drop it from the equation. Further, we take n→∞, and assuming that d→∞ as well, we change
d + 1 to d to simplify the arithmetic. We will briefly assume that our expression for log(X) is an
equation and take the derivative with respect to d, letting X ′ represent the derivative of X. This
gives

X ′

X
=
−2

d2
log(n) +

√
1

2
log(X) log log(X) +

dX ′(1 + log log(X))

4X
√

1
2 log(X) log log(X)

.

Setting X ′ = 0, the last term disappears and we can solve for d, getting

d = (2 log(n))1/2
(1

2
log(X) log log(X)

)−1/4
.

Plugging this value back in, we have

log(X) = 2(2 log(n))1/2(1/2 log(X) log log(X))1/4.

We can divide by log(X)1/4 to get that log(X)3/4 = 2(2 log(n))1/2(1/2 log log(X))1/4, from which
we can obtain the estimate 3

4 log log(X) ∼ 1
2 log log(n). With this approximation, we can get an

estimate for X fully in terms of n, giving us log(X)3/4 ∼ 2(2 log(n))1/2(1/3 log log(n))1/4, or, further
simplified,

log(X) ∼ 4

31/3
(log(n))2/3(log log(n))1/3.

Using these estimates for log(X) and log log(X), we obtain values for d, Y , and LX [1/2, 21/2], the
complexity of the sieving step of the Number Field Sieve. We get

d ∼
( 3 log(n)

log log(n)

)1/3
,

Y = exp(((8/9)1/3 + o(1))(log(n)1/3 log log(n)2/3)),

and

LX [1/2, 21/2] = exp
((

(64/9)1/3 + o(1)
)
(log(n))1/3(log log(n))2/3

)
= Ln[1/3, (64/9)1/3].

The overall complexity of the sieve step compares favorably to the complexity of the Quadratic
Sieve step, which is Ln[1/2, 1], as we have reduced the exponent on the most consequential term,
log(n), by a factor of 2/3.

3.3.5 Full Algorithm Description

We are now ready to expand on the description of the Number Field Sieve given in Algorithm 2.

Algorithm 4. (Full Number Field Sieve) [16] Let n be an odd, composite integer that is not a
prime power.

1. Setup:

(a) Following the results of Section 3.3.4, set d = b(3 log(n)/ log log(n))1/3c and
Y = bexp((8/9)1/3(log(n))1/3(log log(n))2/3)c. Observe that d2d

2
< n, as indicated by

Section 3.3.2.
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(b) Compute f(x) and m as in Section 3.3.1. Check that f(x) is irreducible; if f(x) =
a(x)b(x), return n = f(m) = a(m)b(m) as a factorization and terminate the algorithm.

(c) Let α be a complex root of f(x). Define φ : Z[α]→ Z/nZ, where

φ(a0 + a1α+ · · ·+ ad−1α
d−1) = a0 + a1m+ · · ·+ ad−1m

d−1 (mod n).

(d) Set F (x, y) = ydf(x/y) and G(x, y) = x+my.

(e) For prime numbers p < Y , compute the sets

R(p) = {r ∈ [0, . . . , p− 1] | f(r) ≡ 0 (mod p)}.

Let Y ′ =
∑

primes p<Y |R(p)|.
(f) As per Section 3.3.2, set k = b3 log(n)c. Compute the first k primes q1, . . . , qk greater

than Y such that ∃sj ∈ R(qj) with f ′(sj) 6≡ 0 (mod qj), and store the pairs (qj , sj).

2. Sieve: Use a sieve to find a set S′ of coprime integer pairs (a, b) such that the product
H(a, b) = F (a,−b)G(a, b) is Y -smooth. Keep |a| and |b| as low as possible to increase the
chance that H(a, b) is Y -smooth. Collect elements for S′ until |S′| > π(Y ) + Y ′ + k + 2.

3. Linear Algebra: Construct the exponent vectors for elements (a, b) ∈ S′ as discussed in Section
3.3.2. Use a technique from linear algebra, such as Wiedemann coordinate recurrence, to
identify a linearly dependent subset of these exponent vectors. Define the subset S of S′ to
contain the pairs (a, b) which correspond to the exponent vectors in the linearly dependent
subset.

4. Square Roots: We now have a set S such that

f ′(m)2
∏

(a,b)∈S

(a+ bm) = v2

and
f ′(α)2

∏
(a,b)∈S

(a+ bα) = γ2

for v ∈ Z, γ ∈ Z[α]. Use the prime factorization in the exponent vectors from Step 3 to find
v ≡
√
v2 (mod n). Use Algorithm 3 in Section 3.3.3 to compute γ =

√
γ2.

5. GCD: Let u ≡ φ(γ). Check that u 6≡ ±v (mod n), and if this is the case, return gcd(u− v, n)
a nontrivial factor of n. If u ≡ ±v (mod n), return to the Step 2 and expand the set S′, then
move to Step 3 and find a new set S with linearly dependent exponent vectors.

We now examine each step in our algorithm to arrive at an overall complexity estimate. The setup
step mostly involves a series of one-time computations of constants, which will take negligible time
compared to the sieving and linear algebra steps. The two most tasking parts of the setup phase
are determining if f(x) is irreducible and computing the sets R(p). Checking f(x) for irreducibil-
ity can be done in polynomial time via the algorithm of Lenstra, Lenstra, and Lovász [23]. And
there are several algorithms for finding roots of a polynomial over finite fields which run in time
polynomial in d, the degree of the polynomial — see [33] for details. We then see that the setup
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phase of the algorithm involves a relatively small amount of work compared to the steps that follow.

The sieving phase, as we saw in Section 3.3.4, will take Ln[1/3, (64/9)1/3] steps. Following that,
the linear algebra step, while not insignificant, can be done in time (Y + Y ′ + k)2+o(1) using
Wiedemann coordinate recurrence, and as we saw with the Quadratic Sieve, this does not surpass
the time spent sieving. Though it is difficult to give an exact estimate for the complexity of
the square root step, our discussion in Section 3.3.3 gives us the heuristic O(|S|), and we know
experimentally that the time spent in this step is trivial compared to the time spent in Steps 2
and 3. Finally, the computation of the GCD in Step 5 via the Euclidean algorithm will also take
negligible time. Thus, as with the Quadratic Sieve, the most expensive part of the Number Field
Sieve algorithm is performing the sieve step, and so we give the algorithm as a whole a complexity
of Ln[1/3, (64/9)1/3].

3.4 Improvements to the Number Field Sieve

As with the Quadratic Sieve, there are many enhancements that can be made to the traditional
Number Field Sieve algorithm to improve its practical performance without affecting the asymp-
totic complexity estimate. Some of the suggested changes will be familiar from our discussion of
the Quadratic Sieve. For example, the Large Prime Variation of the Quadratic Sieve, where we
store auxiliary numbers that are nearly smooth with the exception of one large prime factor, and
use pairs of nearly smooth numbers with identical large prime factors to create new, completely
smooth, auxiliary numbers, can be adapted without much difficulty to the Number Field Sieve
context.

There has also been research into a multiple polynomial version of the Number Field Sieve. Letting
d be the degree, and m = bn1/dc, we can write n = md + cd−1m

d−1 + . . . + c1m + c0, and let
f(x) = xd + cd−1x

d−1 + . . .+ c1x+ c0. For small integers i and j, the family of polynomials

fi,j(x) = f(x) + jx2 − (mj − i)x−mi

has the desired property that fi,j(m) ≡ 0 (mod n) for all i, j. So finding additional polynomials is
not too hard. The challenge is in dealing with the fact that since the pairs (p, r) will differ depend-
ing on the polynomial, introducing additional polynomials will require expanding the sieve’s factor
base and thus extending our exponent vector. In turn, longer exponent vectors make the linear
algebra step more difficult. However, some progress has been made in overcoming these difficulties
[15] and experimental results suggest that utilizing multiple polynomials may be advantageous in
practice [18].

There have been additional proposals to speed up the runtime of the Number Field Sieve algorithm
based on some of the aspects it does not share with its predecessor, the Quadratic Sieve. The
remainder of this section previews the most promising of these suggestions, which relate to the
selection of polynomials used in the algorithm. As it turns out, the impact of polynomial selection
can be so large that it is worth expending additional time and resources at the beginning of the
algorithm to optimize choices before proceeding to the sieve stage [16].
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3.4.1 Nonmonic Choices for f

As we saw in Section 3.3.4, the key factor explaining the advantage of the Number Field Sieve
relative to the Quadratic Sieve is the size of the auxiliary numbers it evaluates for smoothness,
and the size of these auxiliary numbers is determined by the values of m and c1, . . . , cd−1, the
coefficients of f(x). In Section 3.3.1, we saw how to find a natural, monic, polynomial f(x) for use
in the algorithm. But working with nonmonic polynomials requires only extending our exponent
vector by one coordinate [16]. By redefining m = dn1/(d+1)e, writing n = cdmd + . . . + c1m + c0,
and letting

f(x) = cdx
d + . . .+ c1x+ c0,

we reach a nonmonic polynomial with coefficients ci bounded by n1/(d+1), instead of n1/d. This is
a decrease by a factor of about n1/(d

2+d), which translates to an asymptotic improvement of about
log(n)1/6 [16]. As n → ∞, this factor is insignificant in the overall asymptotic complexity, but
at the scale of the numbers we currently have the ability to factor, the practical implications are
meaningful.

3.4.2 Polynomial Pairs

In the Number Field Sieve, we sieve over auxiliary numbers of the form H(x, y) = F (x,−y)G(x, y),
where F (x) = ydf(x/y) and G(x) = yg(x/y), with g(x) = x − m. However, we do not need
to force the degree of g(x) to equal one; we could use any other irreducible polynomial with
g(m) ≡ 0 (mod n) and sieve over Z[α′], where α′ is a root of g(x), in an identical manner to
how we sieved over the part of H(x, y) corresponding to F (x,−y). The benefit of this approach
is that a number near x written as the product of two numbers near x1/2 is much more likely
to be smooth than a random number near x. The closer F (x, y) and G(x, y) are in degree, the
more our auxiliary numbers will resemble the product of two numbers near x1/2. Letting F (x, y)
and G(x, y) have equal degree then increases the probability of smoothness by a factor of about

(1.46)(log(n)/(log log(n)))
1/3

, which is theoretically quite significant [16]. Unfortunately, in practice
it can be difficult to find good polynomial pairs f(x) and g(x), as although counting arguments
suggest that good pairs should exist, we don’t have a method for finding them more efficient than
exhaustive search [16].

3.4.3 The Special Number Field Sieve

In rare but often interesting cases, we can find extraordinarily good polynomials with unusually
small coefficients. This is usually due to the number n we wish to factor taking a special form, such
as being a Cunningham number.4 In such instances, we deploy a variation of our algorithm known
as the Special Number Field Sieve, which is able to further exploit the remarkably small coefficients
of the polynomials we are working with [16]. The polynomials used in the Special Number Field
Sieve produce smaller auxiliary numbers, which in turn lower the sieve’s complexity estimate to
Ln[1/3, (32/9)1/3] [28]. For more on the Special Number Field Sieve, we refer to [14].

4Cunningham numbers take the form bn±1, where b and n are integers and b is not a perfect power. Cunningham
numbers occur throughout mathematics; for example, for p a prime, the Cunningham number pn − 1 is the size of
the unit group of a finite field.
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This completes our discussion of the Number Field Sieve. In the final chapter, we will review the
experimental performances of the algorithms we have described so far, and briefly mention other
notable, non-sieve, factoring techniques.
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4 Comparing Factoring Techniques

Having detailed both the Quadratic and Number Field Sieves, we now briefly compare the two.
Before the advent of the Number Field Sieve, the Quadratic Sieve algorithm was considered the
premier general-purpose factoring algorithm. RSA-129, which has 129 decimal digits, is the largest
number first factored with the Quadratic Sieve, this feat having been accomplished by Atkins,
Graff, Lenstra, and Leyland in 1994 [3]. All larger numbers factored as part of the RSA Factoring
Challenge (RSA-130 and beyond) were subsequently first factored using a Number Field Sieve.
The current record for largest general form factored integer is RSA-250, with 250 decimal digits,
factored in February of 2020 by Boudot et al. [6], though the Special Number Field Sieve has been
used successfully with applicable numbers of as many as 320 digits [13]. Though it had already
been factored by the Number Field Sieve, Patrick Konsor succeeded in factoring RSA-140, which
has 140 decimal digits, using the Quadratic Sieve in June of 2020, and this currently stands as the
record for largest integer factored via the Quadratic Sieve [21].

It has been demonstrated experimentally that the Quadratic Sieve is superior for factoring numbers
with fewer than 100 digits, while the Number Field Sieve is preferential for numbers with more
than 130 digits. However, the exact crossover point between the algorithms is unclear, as within
the indicated ambiguous range, performance of both algorithms is highly sensitive to details of
programming/implementation and computer hardware [28].

Finally, this thesis would be remiss if it did not note the existence of two very important non-sieve
factoring algorithms which have not been mentioned as of yet. First is the Elliptic Curve Method
of Hendrik Lenstra, which has a complexity of Lp[1/2, 2

1/2], with p being the smallest prime factor
of n, the number we wish to factor. The Elliptic Curve Method excels at finding factors much
less than

√
n but still larger than what would be feasible to uncover by trial division, and also

uses considerably less space than the linear algebra step of sieving methods [16]. If n has no small
factors, the Elliptic Curve Method performs about as well as the Quadratic Sieve.

Also worthy of mention is Peter Shor’s polynomial-time algorithm for factorization on quantum
computers [32]. While a polynomial-time algorithm unquestionably surpasses a subexponential one,
we are currently limited in our ability to produce quantum computers capable of executing Shor’s
algorithm. Though impressive factorizations have been reported, some studies place the largest
number that can currently be factored on most quantum computers as low as 21 [24].

For large numbers lacking a special form which can be exploited by the Special Number Field Sieve,
the standard Number Field Sieve is considered to be the best general-purpose factoring algorithm
for classical computers. The Number Field Sieve expands on the approach of the Quadratic Sieve to
incorporate number rings, reducing the size of the numbers used in the algorithm and thus further
reducing its already sub-exponential run time. Yet while the Number Field Sieve currently reigns
as the best factoring technique, the existence of Shor’s algorithm suggests that faster factoring,
whether on classical or quantum computers, may be in our future.
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